Integrated Marine Informations System - IMIS

Personen | Instituten | Publicaties | Projecten | Datasets | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Otolith identification using a deep hierarchical classification model
Stock, M.; Nguyen, B.; Courtens, W.; Verstraete, H.; Stienen, E.; De Baets, B. (2021). Otolith identification using a deep hierarchical classification model. Comput. Electron. Agric. 180: 105883. https://dx.doi.org/10.1016/j.compag.2020.105883
Peer reviewed article  

Beschikbaar in  Auteurs 

Author keywords
    Otolith identification, Seabird diet, Deep learning, Hierarchical softmax

Auteurs  Top 
  • Stock, M., meer
  • Nguyen, B., meer
  • Courtens, W.
  • Verstraete, H., meer
  • Stienen, E.
  • De Baets, B., meer

Abstract
    The diet of seabirds can yield important insights into the status of economically and ecologically important fish. By analyzing the otoliths found in the birds’ droppings, researchers can observe which fish the birds eat in which abundances. However, identifying the species based on an otolith image is quite labor-intensive and requires particular expertise. In this work, we show that a deep convolutional neural network can identify six fish species with high accuracy. We show that this deep learning approach outperforms more traditional methods and is also more accessible to set up in practice. By exploiting the hierarchy in the species labels, we impose a structure on the prediction probabilities, leading to a remarkable improvement compared to a conventional artificial neural network. Importantly, we can attain good results using only a modest dataset, demonstrating that such approaches are feasible for small-scale and specialized projects.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs